New Tables of Howland's and Related Integrals

By C. W. Nelson

1. Introduction. In an earlier paper by C. B. Ling and the present author [1], values of the four integrals,

$$
\begin{array}{rlrl}
I_{k} & =\frac{1}{2(k!)} \int_{0}^{\infty} \frac{w^{k} d w}{\sinh w \pm w}=\frac{2^{k}}{k!} \int_{0}^{\infty} \frac{x^{k} d x}{\sinh 2 x \pm 2 x}, & & (k \geqq 1) \\
\left.I_{k}^{*} \geqq 3\right) \\
I I_{k} & =\frac{1}{2(k!)} \int_{0}^{\infty} \frac{w^{k} e^{-w} d w}{\sinh w \pm w}=\frac{2^{k}}{k!} \int_{0}^{\infty} \frac{x^{k} e^{-2 x} d x}{\sinh 2 x \pm 2 x}, & & (k \geqq 1) \tag{2}\\
I I_{k}^{*} & (k \geqq 3)
\end{array}
$$

were tabulated to 6D. These four integrals are called Howland's integrals because they first appeared in Howland's papers dealing with the stresses in a perforated strip [2, 3]. In another paper, C. B. Ling has reproduced the 6D tables of Howland's integrals from [1] and added tables of other integrals derived from them [4].
2. Values of Howland's Integrals to 9D. For most purposes, 6D tables of Howland's integrals are adequate. This is usually true in plane-stress problems of elasticity involving straight bars of rectangular cross-section, for example. However, the author has found that even in such problems the stresses are more easily evaluated in all regions of interest in the bar without resorting to contour integration if 9D rather than 6D tables of Howland's integrals are available. The 9D values of Howland's integrals given in Table 1 were computed by the author and have been checked by using the following checking formulas [1]:

$$
\left\{\begin{align*}
\sum_{k=0}^{\infty}\left(1-I_{2 k+1}\right) & =I_{1}-\frac{1}{4}, & \sum_{k=1}^{\infty} 2 k\left(1-I_{2 k}\right) & =2 I_{2}-\frac{1}{8}, \tag{3}\\
\sum_{k=1}^{\infty}\left(I_{2 k+1}^{*}-1\right) & =\frac{5}{4}, & \sum_{k=2}^{\infty} 2 k\left(I_{2 k}^{*}-1\right) & =\frac{17}{8}, \\
\sum_{k=0}^{\infty} I I_{2 k+1} & =\frac{1}{2}-I I_{1}, & \sum_{k=1}^{\infty} 2 k I I_{2 k} & =\frac{1}{2}-2 I I_{2}, \\
\sum_{k=1}^{\infty} I I_{2 k+1}^{*} & =\frac{1}{2}, & \sum_{k=2}^{\infty} 2 k I I_{2 k}^{*} & =\frac{1}{2} .
\end{align*}\right.
$$

The method of computing the integrals is explained in [1] and this explanation will not be repeated here.
3. Values of $I_{2 k}, I_{2 k}^{*}$, and $\left[\begin{array}{l}2 \\ n\end{array}\right]$ to 18D. Recently the author has encountered a need for still more precise values of some of the Howland's integrals. This occurs in the Hankel transform or Fourier-Bessel integral solutions [5, 6, 7] for problems of elasticity involving axially symmetric loading of a thick plate of infinite radius,

Table 1
Values of Howland's Integrals to 9D

k	I_{k}	$I_{k}{ }^{*}$	I_{k}	$I_{k}{ }^{*}$
1	0.768574538		0.220119581	
2	0.767847439		0.087927235	
3	0.827710296	2.038710667	0.043347862	0.460713719
4	0.883506807	1.353294115	0.022583004	0.099315532
5	0.925475998	1.156864366	0.011923473	0.032412690
6	0.954191562	1.076729764	0.006287972	0.012616908
7	0.972698993	1.039251312	0.003295013	0.005391117
8	0.984124180	1.020537600	0.001713298	0.002433000
9	0.990949179	1.010870147	0.000884147	0.001135997
10	0.994922440	1.005784842	0.000453215	0.000542202
11	0.997188575	1.00308 ± 774	0.000231010	0.000262590
12	0.998459958	1.001644976	0.000117209	0.000128431
13	0.999163823	1.000876180	0.000059254	0.000063239
14	0:999 549306	1.000465841	0.000029870	0.000031283
15	0.999758559	1.000247139	0.000015025	0.000015525
16	0.999871321	1.000130809	0.000007546	0.000007722
17	0.999931719	1.000069073	0.00000378 .5	0.000003847
18	0.999963903	1.000036390	0.000001897	0.000001919
19	0.999980979	1.000019128	0.000000950	0.000000958
20	0.999990006	1.000010034	0.000000476	0.000000478
21	0.999994762	1.000005252	0.000000238	0.000000239
22	0.999997261	1.000002744	0.000000119	0.000000119
23	0.999998570	1.000001431	0.000000060	0.000000060
24	0.999999255	1.000000745	0.000000030	0.000000030
25	0.999999613	1.000000388	0.000000015	0.000000015
26	0.999999799	1.000000201	0.000000007	0.000000007
27	0.999999896	1.000000104	0.000000004	0.000000004
28	0.999999946	1.000000054	0.000000002	0.000000002
29	0.999999972	1.000000028	0.000000001	0.000000001
30	0.999999986	1.000000014	0.000000000	0.000000000
31	0.999999993	1.000000007		
32	0.999999996	1.000000004		
33	0.999999998	1.000000002		
34	0.999999999	1.000000001		
35	0.999999999	1.000000001		
36	1.000000000	1.000000000		

where integrals such as
(4)

$$
F(\rho, \alpha)=\int_{0}^{\infty} \frac{\left(\sinh \frac{x}{2}+\frac{x}{2} \cosh \frac{x}{2}\right) J_{0}(\rho x) J_{1}(\alpha x) d x}{\alpha(\sinh x \pm x)}
$$

must be evaluated. In equation (4), $J_{0}(\rho x)$ and $J_{1}(\alpha x)$ are Bessel functions of order zero and unity, respectively. Sneddon [5, 6] describes an approximate method of evaluating such integrals. He and his associates appear to have treated only cases where the double sign in the denominator has the plus value, but, presumably, their
method could be extended to cases where the double sign takes the minus value. Sneddon's approximate method does not involve the use of Howland's integrals.

For a limiting case of the integral in equation (4), namely $\alpha=0$ and double sign taken as plus, Sneddon found that his approximate method gave errors of the order of 1% for $\rho=0$ to $\frac{1}{2}$. However, the author found that Sneddon's approximate method applied to the integral in equation (4) gave an error of about 7% for $\rho=0, \alpha=1$, and double sign taken plus. Comparable errors in certain other integrals were obtained by the approximate method so that, in a certain thermal stress problem (radius of heated region equal to thickness of plate), the errors in normal stresses on the axis of the plate ranged up to 21.8% of the greatest normal stress occurring anywhere on the axis or 9.3% of the greatest normal stress occurring anywhere in the plate.

The author has felt that it is desirable to be able to obtain the values of integrals such as those considered in the foregoing two paragraphs with an accuracy better than that obtainable by Sneddon's approximate method. The more accurate values may at least be used to check a few values obtained by the approximate method in cases of doubt, and the availability of accurate values of the integrals occurring in thick-plate problems may even be found essential in the extension of the Hankel transform method to problems not yet considered. The author first attempted to evaluate the stresses in a thick-plate problem [7] with the aid of the 9 D values of Howland's given in Table 1 and found that only a very limited range of values of the parameters ρ and a in integrals such as that of equation (4) could be successfully dealt with. For this reason, the 18D values of two of the four Howland's integrals, I_{k} and $I_{k}{ }^{*}$, for even integral k, were computed. These are given in Table 2 and discussed further in the following. Green and Willmore [9] encountered integrals similar to those discussed in the present paper except that theirs contained only one Bessel function. They used Howland's integrals for the simpler integrals they had to evaluate and Sueddon's approximate method for the rest. Apparently the Fouricr-Bessel integral method was first applied to thick plate problems by Lamb [10], who made no attempt to evaluate the integrals. Dougall [11] proposed that integrals such as the example in equation (4), but containing only one Bessel function, be evaluated by contour integration, but apparently no one has cared to perform the task involved which appears to be considerable even though the roots of $\sinh z \pm z=0$ are known.

If the integral taken as an example in equation (4) is expressed as a series of Howland integrals by expanding the numerator of the integrand in powers of x, only even powers of x will occur in this expansion. Thus the integral can be evaluated if adequate values of I_{k} or $I_{k}{ }^{*}$ are available for even integral k, and if the series converges or can somehow be summed. From a consideration of various loading conditions of a thick plate, it appears to the author that as long as the axiallysymmetric loading of the plate consists only of boundary loads on the plane faces (i.e. no body forces), all other integrals needed can also be evaluated from tables of I_{k} and $I_{k}{ }^{*}$ for even integral k. Accordingly, the values of I_{k} and $I_{k}{ }^{*}$ given to 18D in Table 2 are believed to be the only Howland integrals needed in a fairly broad class of thick-plate problems. Again the reader is referred to [1] for the general method of computing the integrals in Table 2. However, it should be stated here that the method depends on the basic equation

Table 2
Values of the Howland Integrals $I_{2 k}$ and $I_{2 k}^{*}$ to 18D

k	I_{k}	$I_{k}{ }^{\text {* }}$
2	0.767847439133919047	
4	$\begin{array}{llllllll}0.883 & 506 & 806 & 508 & 692 & 590\end{array}$	1.353294115170484009
6	0.954191561826139064	1.076729763674217127
8	0.984124180148424614	1.020537600064959340
10	0.994922439853445374	$\begin{array}{lllllllllllll}1.005 & 784 & 842 & 224523505\end{array}$
12	0.998459957947832383	1.001644976253520390
14	0.999549305562626177	1.000465841012174418
16	0.999871321426371778	1.000130808809455335
18	0.999963903069165323	1.000036389774380024
20	0.999990005851207354	1.000010033628030387
22	0.999997260778826414	1.000002744455935026
24	0.999999255282148058	1.000000745402213094
26	0.999999798878365743	1.000000201210025403
28	0.999999945988927609	1.000000054022369865
30	0.999999985565214614	1.000000014436216216
32	0.999999996158384196	1.00000000 .3841795571
34	0.999999998981377142	1.000000001018645284
36	0.999999 999•730 790958	1.000000000269211822
38	0.999999999929059585	1.000000000070940758
40	0.999999999981355380	1.000000000018644662
42	0.999999999995111469	1.000000000004888537
44	0.999 9999999998721023	1.000000000001278977
46	0.999999999999666045	1.000000000000333955
48	0.999999999999912959	1.000000000000087041
50	0.999999999999977351	1.000000000000022649
52	0.999999999999994116	1.000000000000005884
54	0.999999999999998473	1.000000000000001527
56	0.999999999999999604	1.000000000000000396
58	0.999999999999999898	1.000000000000000102
60	0.999999999999999974	1.000000000000000026
62	0.999999999999999993	1.000000000000000007
64	0.999999999999999998	1.000000000000000002
66	1.000000000000000000	1.000000000000000000

(5)

$$
\begin{aligned}
& I_{k} \\
& I_{k}{ }^{*}=\sum_{n=1}^{\infty}(\mp 1)^{n+1}\left[\begin{array}{l}
k \\
n
\end{array}\right], ~
\end{aligned}
$$

where
(6)

$$
\left[\begin{array}{l}
k \\
n
\end{array}\right]=\frac{1}{2(k!)} \int_{0}^{\infty} \frac{x^{n+k-1} d x}{\sinh ^{n} x}
$$

and that the values in Table 2 have been checked by using the second and fourth of equations (3). When these checks were first applied, errors were indicated. To eliminate these errors, they had to be located and this was facilitated by applying another checking formula \dagger

[^0](7)
\[

\sum_{m=1}^{\infty} \frac{2 m}{2 m+1}\left[$$
\begin{array}{c}
2 m \\
n
\end{array}
$$\right]=\frac{1}{2(n-1)}, \quad n=2,3,4, \cdots
\]

Equation (7) is obtained by writing the series of integrals represented by the left member of the equation, interchanging the order of summation and integration, performing the summation which requires merely recognition of the Maclaurin expansion of $\cosh x-\frac{\sinh x}{x}$ and then performing the evaluation of the resulting elementary integral as follows:
(8) $\frac{1}{2} \int_{0}^{\infty} \frac{x^{n-2}(x \cosh x-\sinh x) d x}{\sinh ^{n} x}=-\left.\frac{x^{n-1}}{2(n-1) \sinh ^{n-1} x}\right|_{0} ^{\infty}=\frac{1}{2(n-1)}$.

Table 3
Values of $\left[\begin{array}{l}2 \\ n\end{array}\right]$ to 18D

n	$\left[\begin{array}{l}2 \\ n\end{array}\right]$	n	$\left[\begin{array}{l}2 \\ n\end{array}\right]$
1	1.051799790264645000	21	0.036396239976639766
2	0.450 7713386848477857	22	0.034712213240700944
3	0.283656164817032302	23	0.033177094523417174
4	0.206411435020280449	24	0.031771973852978737
5	0.162091502769567468	25	0.030481012454106163
6	0.133389997047394398	26	0.029290843691027776
7	0.113302756992243931	27	0.028 .190108942707765
8	$0.098+63515074533508$	28	0.027169094240899480
9	0.087055830293630464	29	0.026219443043962235
10	0.078014012373164903	30	0.025333927165280539
11	0.0706671880431666952	31	$0.024506262569 ~$ 448302
12		32	$0.023 ~ 730 ~ 960 ~$ 108696094
13	0.059 474 138718298180	33	0.023003203705225661
14	0.055 107451486079519	34	0.022318750267406497
15	$\begin{array}{llllllllllllll}0.051 & 337 & 774 & 971 & 088 \\ 0.069\end{array}$	35	0.021673846947047716
16	$\begin{array}{lllllll}0.048 & 050 & 565 & 748 & 631 & 057\end{array}$	36	$0.021 ~$ 065162331082628
17	$\begin{array}{llllllllllll}0.045 & 158 & 809 & 284 & 589 & 149\end{array}$	37	0.020489728904903199
18		38	0.019944894690604315
19	0.040 306957521379715	39	0.019428282397575541
20	$0.038 \quad 251937970666201$	40	0.018937754758470797

Table 4

Values of $\int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x+x}$

ρ	$\int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x+x}$
0	0
1	0.471282
2	0.250403
3	0.166664
4	0.125000
5	0.100000

The values of $\left[\begin{array}{l}2 \\ n\end{array}\right]$ are recorded in Table 3, since they are the starting point for obtaining I_{k} and $I_{k}{ }^{*}$, and because they may be needed as in the example leading to Table 4 in the following. It was not felt necessary to include values of $\left[\begin{array}{l}m \\ n\end{array}\right]$ for $m=4,6,8, \cdots$ because, at worst, only a few such values might be needed by a reader, and these can be computed from Table 3 by using equation (16) given in the following.
4. Application of Howland's Integrals in Evaluating Related Integrals. Procedures for evaluating integrals such as those in equation (4) for moderate values of ρ and α, say for ρ and α each less than unity, have been amply discussed in connection with similar integrals treated in references [2], [3], [4] and [7]. If either ρ or α (or both) should be considerably greater than unity in integrals such as those of equation (4), some special study of the integral in question is usually required and an effort should be made to determine some simple expression which the value of the integral approaches asymptotically for large values of the parameter or parameters. Usually this can be done by considering the physical problem in which the integral arose and by examining the known approximate solution for a limiting case of the problem. For example, suppose the integral $\int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x+x}$ is to be evaluated for a series of values of ρ covering the range $0 \leqq \rho<\infty$. The integral arises in a three-dimensional elasticity problem involving axially symmetric loads on a thick plate. By considering a limiting case of the physical problem or by other methods, it can be shown that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x+x} \approx \frac{1}{2 \rho} \tag{9}
\end{equation*}
$$

for large ρ.
Thus the range of values of ρ which must be considered is reduced to the range from zero to the lowest value at which equation (9) gives the result with sufficient accuracy. The integral in question may be expressed as a series of integrals in the form

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x+x}=\sum_{n=1}^{\infty}(-1)^{n+1} \int_{0}^{\infty} \frac{x^{n} J_{1}(\rho x) d x}{\sinh ^{n} x} \tag{10}
\end{equation*}
$$

where the integrals in the right member may be evaluated by contour integration following the method described for a similar integral in [8]. For example, the first two integrals required are

$$
\begin{align*}
& \int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x}=\frac{1}{\rho}-2 \pi\left[\kappa_{1}(\pi \rho)-2 \kappa_{1}(2 \pi \rho)+3 \kappa_{1}(3 \pi \rho)-\cdots\right] \tag{11}\\
& \begin{array}{r}
\int_{0}^{\infty} \frac{x^{2} J_{1}(\rho x) d x}{\sinh ^{2} x}=\frac{1}{\rho}+2 \pi\left[\kappa_{1}(\pi \rho)+2 \kappa_{1}(2 \pi \rho)+3 \kappa_{1}(3 \pi \rho)+\cdots\right] \\
\\
\quad-2 \pi^{2}\left[\left[\kappa_{0}(\pi \rho)+4 \kappa_{0}(2 \pi \rho)+9 \kappa_{0}(3 \pi \rho)+\cdots\right]\right.
\end{array} \tag{12}
\end{align*}
$$

where $\kappa_{0}(x)$ and $\kappa_{1}(x)$ are modified Bessel functions of the second kind of order zero and one respectively.

By evaluating the first four integrals and applying an Euler transformation to
the resulting alternating series in equation (10), the values of the left member of equation (10) for $\rho=4$ and $\rho=5$ were found to be as given in Table 4. The entries in Table 4 were completed as follows. For $\rho=0$ and $\rho=1$, the integral was evaluated from

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x+x}=2 \rho I_{2}-2 \cdot \frac{3}{2} \rho^{3} I_{4}+2 \cdot \frac{3 \cdot 5}{2 \cdot 4} \rho^{5} I_{6}-\cdots \tag{13}
\end{equation*}
$$

For $\rho=2$ and $\rho=3$, a Kummer transformation was applied to equation (13) so as to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x J_{1}(\rho x) d x}{\sinh x+x}=\sum_{n=1}^{4}(-1)^{n+1} \int_{0}^{\infty} \frac{x^{n} J_{1}(\rho x) d x}{\sinh ^{n} x}+\text { Remainder Series } \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
\text { Remainder Series }=2 \rho\left\{I_{2}-\sum_{n=1}^{4}\right. & \left.(-1)^{n+1}\left[\begin{array}{l}
2 \\
n
\end{array}\right]\right\} \\
& -2 \cdot \frac{3}{2} \rho^{3}\left\{I_{4}-\sum_{n=1}^{4}(-1)^{n+1}\left[\begin{array}{l}
4 \\
n
\end{array}\right]\right\}+\cdots \tag{15}
\end{align*}
$$

The remainder series converges for $\rho<5$ but the convergence is, of course, very slow as ρ approaches 5 and, even for $\rho=2$ and $\rho=3$, it is best to speed the convergence by applying an Euler transformation. To evaluate the series in equation (15), it is necessary to use Table 2, Table 3, and the equation

$$
\begin{align*}
& {\left[\begin{array}{l}
m \\
n
\end{array}\right]=\frac{1}{(m-1) m}\left\{\frac{(n+m-2)(n+m-1)}{n^{2}}\left[\begin{array}{c}
m-2 \\
n
\end{array}\right]\right.} \tag{16}\\
&\left.-\frac{(n+1)}{n}\left[\begin{array}{c}
m-2 \\
n+2
\end{array}\right]\right\}
\end{align*}
$$

which is equivalent to the first of equations (4) in reference [1].
5. Acknowledgments. Except for Table 4, the tables presented in this paper were computed while the author was employed as Associate Professor of Mechanics and Design, University of California, Berkeley, California, prior to June 30, 1959.
Applied Physics Laboratory
GPI) Development Laboratory
International Business Machines Corporation
Endicott, New York

1. C. B. Ling \& C. W. Nelson, "On evaluation of Howland's integrals," Annals of Academia Sinica, Taiwan, China, v. 2, part 2, 1955, p. 45-50.
2. R. C. J. Howland "On the stresses in the neighborhood of a circular hole in a strip under tension," Philos. Trans., Roy. Soc. London, Ser. A, v. 229, 1930, p. 49-86.
3. R. C. J. Howland \& A. S. Stevenson, "Biharmonic analysis in a perforated strip," Philos. Trans. Roy. Soc. London, Ser. A, v. 232, 1934, p. 155-222.
4. C. B. Ling, "Tables of values of 16 integrals of algebraic-hyperbolic type," MTAC, v. 11, 1957, p. 160-166.
5. I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951, p. 468-480.
6. I. N. SNEDDON, "The elastic stresses produced in a thick plate by the application of pressure to its free surfaces," Proc., Cambridge Philos. Soc., v. 42, 1946, p. 260-271.
7. C. W. NeLson, "Thermal stresses in a thick plate owing to variation of temperature with radial position," to appear in J. Appl. M $\epsilon c h$.
8. G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, Cambridge, 1952, p. 427.
9. A. E. Green \& T. J. Willmore. "Three-dimensional stress systems in isotropic plates, II," Proc. Roy. Soc. London, Ser. A, v. 193, 1948, p. 229-248.
10. H. Lamb, "On Boussinesq's problem," Proc. London Math. Soc., v. 34, 1902, p. 276284.
11. J. Dougall, "An analytical theory of the equilibrium of an isotropic elastic plate," Trans. Roy. Soc. Edinburgh, v. 41, 1904, p. 129-228.

[^0]: \dagger For $n=1$, use
 (7a)

 $$
 \sum_{m=1}^{\infty}\left(\left[\begin{array}{c}
 2 m \\
 1
 \end{array}\right]-1\right)=\frac{3}{4}-\ln 2
 $$

