
New Tables of Howland's and Related Integrals 

By C. W. Nelson 

1. Introduction. In an earlier paper by C. B. Ling and the present author [11, 
values of the four integrals, 
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were tabulated to 6D. These four integrals are called Howland's integrals because 
they first appeared in Howland's papers dealing with the stresses in a perforated 
strip [2, 31. In another paper, C. B. Ling has reproduced the 6D tables of Howland's 
integrals from [11 and added tables of other integrals derived from them [41. 

2. Values of Howland's Integrals to 9D. For most purposes, 6D tables of 
lowland's integrals are adequate. This is usually true in plane-stress problems of 
elasticity involving straight bars of rectangular cross-section, for example. How- 
ever, the author has found that even in such problems the stresses are more easily 
evaluated in all regions of interest in the bar without resorting to contour integra- 
tion if 9D rather than GD tables of Howland's integrals are available. The 9D 
values of Howland's integrals given in Table 1 were computed by the author and 
have been checked by using the following checking formulas [11: 
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The method of computing the integrals is explained in [1] and this explanation will 
not be repeated here. 

3. Values of 12k, 12k, and [2 to 18D. Recently the author has encountered a 

need for still more precise values of some of the Howland's integrals. This occurs in 
the Hankel transform or Fourier-Bessel integral solutions [5, 6, 71 for problems of 
elasticity involving axially symmetric loading of a thick plate of infinite radius, 
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TABLE 1 

Values of Howland's Integrals to 9D 

k Ik A Irk | Ik 

1 0.768 574 538 0.220 119 581 
2 0.767 847 439 0.087 927 235 
3 0.827 710 296 2.038 710 667 0.043 347 862 0.460 713 719 
4 0.883 506 807 1.353 294 115 0.022 583 004 0.099 315 532 
5 0.925 475 998 1.156 864 366 0.011 923 473 0.032 412 690 
6 0.954 191 562 1.076 729 764 0.006 287 972 0.012 616 908 
7 0.972 698 993 1.039 251 312 0.003 295 013 0.005 391 117 
8 0.984 124 180 1.020 537 600 0.001 713 298 0.002 433 000 
9 0.990 949 179 1.010 870 147 0.000 884 147 0.001 135 997 

10 0.994 922 440 1.005 784 842 0.000 453 215 0.000 542 202 
11 0.997 188 575 1.003 084 774 0.000 231 010 0.000 262 590 
12 0.998 459 958 1.001 644 976 0.000 117 209 0.000 128 431 
13 0.999 163 823 1.000 876 180 0.000 059 254 0.000 063 239 
14 0;999 549 306 1.000 465 841 0.000 029 870 0.000 031 283 
15 0.999 758 559 1.000 247 139 0.000 015 023 0.000 015 525 
16 0.999 871 321 1.000 130 809 0.000 007 546 0.000 007 722 
17 0.999 931 719 1.000 069 073 0.000 003 783 0.000 003 847 
18 0.999 963 903 1.000 036 390 0.000 001 897 0.000 001 919 
19 0.999 980 979 1.000 019 128 0.000 000 950 0.000 000 958 
20 0.999 990 006 1.000 010 034 0.000 000 476 0.000 000 478 
21 0.999 994 762 1.000 005 252 0.000 000 238 0.000 000 239 
22 0.999 997 261 1.000 002 '744 0.000 000 119 0.000 000 119 
23 0.999 998 570 1.000 001 431 0.000 000 060 0.000 000 060 
24 0.999 999 255 1.000 000 745 0.000 000 030 0.000 000 030 
25 0.999 999 613 1.000 000 388 0.000 000 015 0.000 000 015 
26 0.999 999 799 1.000 000 201 0.000 000 007 0.000 000 007 
27 0.999 999 896 1.000 000 104 0.000 000 004 0.000 000 004 
28 0.999 999 946 1.000 000 054 0.000 000 002 0.000 000 002 
29 0.999 999 972 1.000 000 028 0.000 000 001 0.000 000 001 
30 0.999 999 986 1.000 000 014 0.000 000 000 0.000 000 000 
31 0.999 999 993 1.000 000 007 
32 0.999 999 996 1.000 000 004 
33 0.999 999 998 1.000 000 002 
34 0.999 999 999 1.000 000 001 
35 0.999 999 999 1.000 000 001 
36 1.000 000 000 1.000 000 000 

where integrals such as 

(4) F^p, = (silh 2 + 2 cosh Jo(px) J (cax) dx 
a(sinh x -t x) 

must be evaluated. In equation (4), Jo(px) and Jj(ax) are Bessel functions of 
order zero and unity, respectively. Sneddon [5, 6] describes an approximate method 
of evaluating such integrals. He and his associates appear to have treated only cases 
where the double sign in the denominator has the plus value, but, presumably, their 
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method could be extended to cases where the double sign takes the minus value. 
Sneddon's approximate method does not involve the use of Howland's integrals. 

For a limiting case of the integral in equation (4), namely a = 0 and double sign 
taken as plus, Sneddon found that his approximate method gave errors of the order 
of 1 % for p = 0 to 2. However, the author found that Sneddon's approximate 
method applied to the integral in equation (4) gave an error of about 7 % for 
p = 0, a = 1, and double sign taken plus. Comparable errors in certain other inte- 
grals were obtained by the approximate method so that, in a certain thermal stress 
problem (radius of heated region equal to thickness of plate), the errors in normal 
stresses on the axis of the plate ranged up to 21.8 % of the greatest normal stress 
occurring anywhere on the axis or 9.3 % of the greatest normal stress occurring 
anywhere in the plate. 

The author has felt that it is desirable to be able to obtain the values of integrals 
such as those considered in the foregoing two paragraphs with an accuracy better 
than that obtainable by Sneddon's approximate method. The more accurate values 
may at least be used to check a few values obtained by the approximate method in 
cases of doubt, and the availability of accurate values of the integrals occurring in 
thick-plate problems may even be found essential in the extension of the Hankel 
transform method to problems not yet considered. The author first attempted to 
evaluate the stresses in a thick-plate problem [7] with the aid of the 9D values of 
Howland's given in Table 1 and found that only a very limited range of values of 
the parameters p and a in integrals such as that of equation (4) could be success- 
fully dealt with. For this reason, the 18D values of two of the four Howland's 
integrals, Ik and IM.*, for even integral k, were computed. These are given in Table 2 
and discussed further in the followving. Green and Willmore [91 encountered integrals 
similar to those discussed in the present paper except that theirs contained only 
one Bessel function. They used Howvland's integrals for the simpler integrals they 
had to evaluate and Snieddon's approximate method for the rest. Apparently the 
Fourier-Bessel integral method was first applied to thick plate problems by Lamb 
[10], who made no attempt to evaluate the integrals. Dougall [11] proposed that 
integrals such as tihe example in equation (4), but containing only one Bessel 
function, be evaluated by contour integration, but apparently no one has cared to 
perform the task involved which appears to be considerable even though the roots 
of sinh z + z = 0 are known. 

If the integral taken as aln example in equation (4) is expressed as a series of 
Howland integral by expanding the numerator of the integrand in powers of x, 
only even powers of x will occur in this expansion. Thus the integral can be evalu- 
ated if adequate values of Ik or I,* are available for even integral k, and if the series 
converges or can somehow be sunmmed. From a consideration of various loading 
conditions of a thick plate, it appears to the author that as long as the axially- 
symmetric loading of the plate consists only of boundary loads on the plane faces 
(i.e. no body forces), all other integrals needed can also be evaluated from tables 
of Ik and Ik* for even integral k. Accordingly, the values of Ik and Ik* given to 18D 
in Table 2 are believed to be the only Howland integrals needed in a fairly broad 
class of thick-plate problems. Again the reader is referred to [11 for the general 
method of computing the integrals in Table 2. However, it should be stated here 
that the method depends on the basic equation 
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TABLE 2 
Values of the Howland Integrals 12k and l2k to 18D 

k Ik fk* 

2 0.767 847 439 133 919 047 
4 0.883 506 806 008 692 590 1.353 294 115 170 484 009 
6 0.954 191 561 826 139 064 1.076 729 763 674 217 127 
8 0.984 124 180 148 424 614 1.020 537 600 064 909 340 

10 0.994 922 439 853 445 374 .1.005 784 842 224 523 505 
12 0.998 459 957 947 832 383 1.001 644 976 253 520 390 
14 0.999 549 305 562 626 177 1.000 465 841 012 174 418 
16 0.999 871 321 426 371 778 1.000 130 808 809 455 335 
18 0.999 963 903 069 165 323 1.000 036 389 774 380 024 
20 0.999 990 005 851 207 354 1.000 010 033 628 030 387 
22 0.999 997 260 778 826 414 1.000 002 744 455 935 026 
24 0.999 999 255 282 148 008 1.000 000 745 402 213 094 
26 0.999 999 798 878 365 743 1.000 000 201 210 025 403 
28 0.999 999 945 988 927 609 1.000 000 054 022 369 865 
30 0.999 999 985 565 214 614 1.000 000 014 436 216 216 
32 0.999 999 996 158 384 196 1.000 000 003 841 795 571 
34 0.999 999 998 981 377 142 1.000 000 001 018 645 284 
36 0.999 999 999- 730 790 958 1.000 000 000 269 211 822 
38 0.999 999 999 929 059 585 1.000 000 000 070 940 758 
40 0.999 999 999 981 355 380 1.000 000 000 018 644 662 
42 0.999 999 999 995 111 469 1.000 000 000 004 888 537 
44 0.999 999 999 998 721 023 1.000 000 000 001 278 977 
46 0.999 999 999 999 666 045 1.000 000 000 000 333 955 
48 0.999 999 999 999 912 959 1.000 000 000 000 087 041 
50 0.999 999 999 999 977 351 1.000 000 000 000 022 649 
52 0.999 999 999 999 994 116 1.000 000 000 000 005 884 
54 0.999 999 999 999 998 473 1.000 000 000 000 001 527 
56 0.999 999 999 999 999 604 1.000 000 000 000 000 396 
58 0.999 999 999 999 999 898 1.000 000 000 000 000 109 
60 0.999 999 999 999 999 974 1.000 000 000 000 000 026 
62 0.999 999 999 999 999 993 1.000 000 000 000 000 007 
64 0.999 999 999 999 999 998 1.000 000 000 000 000 002 
66 1.000 000 000 000 000 000 1.000 000 000 000 000 000 

1* LnJ 

where 

(6) [~~ ~~~~k] 1 40x 

n4+k- dx 

and that the values in Table 2 have been checked by using the second and fourth 
of equations (3). When these checks were first applied, errors were indicated. To 
eliminate these errors, they had to be located and this was facilitated by applying 
another checking formula 

t For n = 1, ise 

(7a) t (\[n'j-1) = - In2 
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m2+ 1 [ n1] 2(n 11) ' n = 2, 3, 4,** - 
Equation (7) is obtained by writing the series of integrals represented by the left 
member of the equation, interchanging the order of summation and integration, 
performing the summation which requires merely recognition of the Maclaurin 

expansion of cosh x - sinh X and then performing the evaluation of the resulting 
x 

elementary integral as follows: 

(8)1 x-2(x cosh x - sinh x) dx Xn-)_ 
o 1 1 

2 Jo sinhn x 2(n - 1) sinhn-' x o 2(n - 1) 

TABLE 3 

Values of [] to 18D 

ns [n] ns [FM] 

1 1.051 799 790 264 645 000 21 0.036 396 239 976 639 766 
2 0.450 771 338 684 847 857 22 0.034 712 213 240 700 944 
3 0.283 656 164 817 032 302 23 0.033 177 094 523 417 174 
4 0.206 411 435 020 280 449 24 0.031 771 973 852 978 737 
5 0.1 62 091 502 769 567 468 29 0.030 481 012 454 106 163 
6 0.133 389 997 047 394 398 26 0.029 290 843 691 027 776 
7 0.113 302 75 6 992 243 931 27 0.028,190 108 942 707 765 
8 0.098 463 515 074 533 508 28 0.027 169 094 240 899 480 
9 0.087 055 830 293 630 464 29 0.026 219 443 043 962 235 

10 0.078 014 012 373 1 64 903 30 0.025 333 927 165 280 539 
11 0.070 6(11 880 431 666 952 31 0.024 506 262 569 448 302 
12 0. 064 5'1 720 775 0:32 384 32 0.023 730 960 108 696 094 
13 0.059 474 138 718 298 180 33 0.023 003 203 705 225 661 
14 0.055 107 451 486 079 519 34 0.022 318 750 267 406 497 
15 0.031 3:37 774 971 088 869 35 0.021 673 846 947 047 716 
16 0.048 050 565 748 631 057 36 0.021 065 162 331 082 628 
17 0.045 138 809 284 589 149 37 0.020 489 728 904 903 199 
18 0.042 595 221 342 283 185 38 0.019 944 894 690 604 315 
19 0.040 306 957 521 379 715 39 0.019 428 282 397 575 541 
20 0.038 251 937 970 666 201 40 0.018 937 754 758 470 797 

TABLE 4 

Valued O>f /xJi(Px) 
dx 

Vu sinh x+x 

xJli(px) dx 
10sinh x +x 

0 0 
1 0.471 282 
2 0.250 403 
3 0.166 664 
4 0.125 000 
5 0.100 000 
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The values of [2] are recorded in Table 3, since they are the starting point for 

obtaining Ik and Io*, and because they may be needed a6 in the example leading to 

Table 4 in the following. It was not felt necessary to include values of [ ] for 

m = 4, 6, 8, ... because, at worst, only a few such values might be needed by a 
reader, and these can be computed from Table 3 by using equation (16) given in 
the following. 

4. Application of Howland's Integrals in Evaluating Related Integrals. Pro- 
cedures for evaluating integrals such as those in equation (4) for moderate values 
of p and a, say for p and a each less than unity, have been amply discussed in con- 
nection with similar integrals treated in references [2], [3], [41 and [7]. If either p or 
a (or both) should be considerably greater than unity in integrals such as those 
of equation (4), some special study of the integral in question is usually required 
and an effort should be made to determine some simple expression which the 
value of the integral approaches asymptotically for large values of the parameter 
or parameters. Usually this can be done by considering the physical problem in 
which the integral arose and by examining the known approximate solution for 

a limiting case of the problem. For example, suppose the integral fx? (px) dx is 
sih x + x 

to be evaluated for a series of values of p covering the range 0 < p < m0. The inte- 
gral arises in a three-dimensional elasticity problem involving axially symmetric 
loads on a thick plate. By considering a limiting case of the physical problem or by 
other methods,,it can be shown that 

(9)f sinh x + x 2p ' for large p. 

Thus the range of values of p which must be considered is reduced to the range from 
zero to the lowest value at which equation (9) gives the result with sufficient 
accuracy. The integral in question may be expressed as a series of integrals in the 
form 

(0 xJi(px) dx E (GO)n xVJi(px) dx 
sinh x + x n=f sinhn x 

where the integrals in the right member may be evaluated by contour integration 
following the method described for a similar integral in [8]. For example, the first 
two integrals required are 

(11) f xJ1(px) dx = - _ 2ir[Kj(7rP) - 2Kl(2rp) + 3KX(3Wp) 
sO sinh x p 

(12)____ I= - + 2r[Kl(rp) + 2Kl(27rp) + 3Kl(3lrp) + ] 
(12) Jo sinh2 xr p 

- 2r 2p[Ko ( p) + 4Ko(27rp) + 9Ko(3Wp) + 

where Ko(x) and Ici(x) are modified Bessel functions of the second kind of order zero 
and one respectively. 

By evaluating the first four integrals and applying an Euler transformation to 
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the resulting alternating series in equation (10), the values of the left member of 
equation (10) for p = 4 and p = 5 were found to be as given in Table 4. The entries 
in Table 4 were completed as follows. For p = 0 and p = 1, the integral was evalu- 
ated from 

(13) f~ xJl (px) dx 3P 2 +2 5 Ph- 
(13) 17 sinhx + x 2PI2-2 3I4 + 2 . 3 p 

For p = 2 and p = 3, a Kummer transformation was applied to equation (13) so 
as to obtain 

(14) fxJi(Px) dx - (i)n~' f xfi(px) dx + Remainder Series 
sinhx + X n l sinh'I x 

where 

Remainder Series = 2p 1I2 (1 )Ef' [n]} 

-2.1p3 {14- (-i)n+ [nJ} + 

The remainder series converges for p < 5 but the convergence is, of course, very 
slow as p approaches 5 and, even for p = 2 and p = 3, it is best to speed the con- 
vergence by applying an Euler transformation. To evaluate the series in equation 
(15), it is necessary to use Table 2, Table 3, and the equation 

rM l (n + m -2) (n + m -1) rm-2 

(16) 
n 

(m-lm n2 L n 
(n + 1) Fm-21\ 

n Ln + 2J 
which is equivalent to the first of equations (4) in reference [1]. 
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